Journal of Organometallic Chemistry, 76 (1974) C45–C46 © Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

STABILISATION OF TRANSITION METALS IN A LOW COORDINATIVE ENVIRONMENT USING THE BIS(TRIMETHYLSILYL)METHYL LIGAND; A MONOMERIC Cr^{III} ALKYL, Cr[CH(SiMe₃)₂]₃, AND RELATED COM-PLEXES

G.K. BARKER and M.F. LAPPERT

School of Molecular Sciences, University of Sussex, Brighton BN1 9QJ (Great Britain) (Received June 17th, 1974)

Summary

 $(Me_3 Si)_2 CHLi(RLi)$ and $CrCl_3$ in $Et_2 O$ at 0° yield bright-green, airsensitive, crystalline monomeric $(C_6 H_6) CrR_3$, which has a magnetic moment of 3.7 B.M., shows g values (ESR) at ca. 2 and ca. 4, and is diamagnetic red $CrR_3 \cdot NO$ with NO or Ph₃ C· with Ph₃ CCl; the following stable alkyls are reported; $MR_3 \cdot 2THF$ (M = Sc or Y), M'R₃ (M' = Y, Ti, or V), ClM''R₃ (M'' = Zr or Hf), and Cp₂ TiR.

Thermally-stable binary (homoleptic) alkyls of the early transition metals have recently been reported, using $Me_3SiCH_2^-$ (R'^-) as ligand [1]. These are tetrahedral or distorted tetrahedral d^0 to d^2 complexes of formula MR'_4 (M = Ti, Zr, Hf, V, or Cr) or (MR'_3)₂ (M = Mo or W). For Group IIIA metals, stability was achieved only by incorporation into the metal coordination sphere of extra ligands, viz., $MR'_3 \cdot 2THF$ (M = Sc or Y) [2].

We now show that, using the more bulky $(Me_3 Si)_2 CH^- (R^-)$ [3] presumed trigonal or distorted trigonal d^0 to d^3 complexes MR₃ (M = Y, Ti, V, or Cr) become accessible. Scandium and yttrium compounds have also been obtained as the adducts, MR₃ · 2THF, and Zr and Hf species as ClMR₃ (from ZrCl₄ or HfCl₄ and an excess of LiR). Whereas Cp₂ TiCl₂ and LiR' gave Cp₂ TiR'₂ [4], LiR gave (Cp₂ TiCl)₂ (with 1 mol of LiR) or Cp₂ TiR (with 2 mol of LiR).

It is evident that for bulky ligands of the type R and R', the metal coordination number is affected primarily by the nature of the ligand rather than the electronic configuration of the metal. Similarly, whereas the 1-norbornyl ligand (R") has yielded four-coordinate species MR''_4 (M = Ti, Zr, Hf, V, Cr, Mn, Fe, or Co), the related but more crowded 2,2,3-trimethyl-1-norbornyl (R''') is found in CrR'''₃ [5]. Three-coordination is also a feature of (Me₃ Si)₂ \dot{N}^- complexes [6], and of the stable radical SnR₃ [7].

A typical synthetic procedure involved addition of bis(trimethylsilyl)methyllithium, LiR, in diethyl ether to $CrCl_3$ at 0° to give bright-green, airsensitive crystals of CrR₃. This gave satisfactory microanalytical results. It is a monomer in $C_6 H_6$ (cryoscopy) and has $v(CrC_3)$ at 403 and 449 cm⁻¹. The ESR spectrum (frozen toluene solution or solid) showed g values at ca. 2 and ca. 4, appropriate [8] for Cr^{III} in a trigonal environment. The magnetic moment (Gouy) is 3.7 B.M. at 20°, and showed (by NMR [9] insignificant temperature dependence over the range +30 to -60° . CrR₃ did not sublime in vacuo; decomposition took place at ca. 80° with formation of $(Me_3 Si)_2 CH_2$. The chromium atom in CrR₃ appears to be highly shielded by the bulky ligands, because there was no reaction with severally $(Me_3 Si)_2 NH_1$, $C_5 H_5 N$, or CO_2 . However, with 1 equivalent of NO in hexane, a diamagnetic deep red solution was formed, presumed to be $CrR_3 \cdot NO [\nu(NO) 1672 \text{ cm}^{-1}]$ (cf. [10], the behaviour of $Cr[N(SiMe_3)_2]_3$). Trityl chloride afforded Ph₃C. (ESR) and a purple solution believed to contain $ClCrR_3$. Hydrolysis or reaction with glacial HOAc afforded (Me₃Si)₂CH₂ (100%) and Cr(OH)₃ or Cr(OAc)₃. Some data for the other compounds are in Table 1.

TABLE 1

TRIS[BIS(DIMETHYLSILYL)METHYL]METAL COMPLEXES

Alkyl precursor ^a (solvent)	Product (appearance) ^b	$\nu(MC_3) (cm^{-1})$	τ values (ppm) [(CH ₃) ₃ Si, CH]
ScCl, (THF/Et, O)	ScR ₃ •2THF (white)	415	9.31;10.16
YCl ₃ (PhCH ₃ /Et ₂ O)	YR ₃ (white)	402	9.60; 10.53 ^e
YCl, (THF/Et, O)	YR, •2THF (white)		9.36; 10.43 e
$TiCl_3 \cdot 2Me_3 N$ (Et ₂ O)	TiR ₃ (green-blue)	432, 403	f
VCl3 • 2Me3 N (Et2 O)	VR ₃ (green-blue)	460, 400	
CrCl, (Et, O)	CrR, (bright green)	449, 403	g
Cp ₂ TiCl ₂ (Et ₂ O)	Cp, TiR (green-brown)	463	h
ZrCl4 (Et2 O)	ClZrR ₃ (white)	443, 415 ^c	9.50; 8.80
HfCl ₄ (Et ₂ O)	ClHfR ₃ (white)	424, 414 d	9.51; 9.51

^a + RLi. ^b All products crystalline. ^c ν (ZrCl) 368 cm⁻¹. ^d ν (HfCl) 350 cm⁻¹. ^e ²J(YH) 2.5 Hz. ^f g(ESR) 1.968. ^g g(ESR) 2.0 and 3.9, μ_{eff} 3.7 B.M.^h g(ESR) 1.960.

Acknowledgements

We thank S.R.C. for the award of a fellowship to G.K.B., and Mr. P.W. Lednor for the ESR data.

References

- 1 C.S. Cundy, B.M. Kingston and M.F. Lappert, Advan. Organometal. Chem., 11 (1973) 253; G. Wilkinson, Chimia, 27 (1972) 165.
- 2 M.F. Lappert and R. Pearce, J. Chem. Soc. Chem. Commun., (1973) 126.
- 3 P.J. Davidson and M.F. Lappert, J. Chem. Soc. Chem. Commun., (1973) 317.
- 4 M.R. Collier, M.F. Lappert and R. Pearce, J. Chem. Soc. Dalton, (1973) 445.
- 5 B.K. Bower and H.G. Tennent, J. Amer. Chem. Soc., 94 (1972) 2512.
- 6 Cf., D.C. Bradley, Advan. Inorg. Chem. Radiochem., 15 (1972) 259.
- 7 P.J. Davidson, A. Hudson, M.F. Lappert and P.W. Lednor, J. Chem. Soc. Chem. Commun., (1973) 948
- 8 D.C. Bradley, M.B. Hursthouse and C.W. Newing, Chem. Commun., (1971) 411.
- 9 D.F. Evans, J. Chem. Soc., (1959) 2003.
- 10 D.C. Bradley and C.W. Newing, Chem. Commun., (1970) 219.